Ref No:	

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

LABORATORY PLAN

Academic Year 2019-20

Program:	B E – Civil Engineering	
Semester:	5	
Course Code:	17CVL58	
Course Title:	Concrete and Highway Materials laboratory	
Credit / L-T-P:	02/0-0-3	
Total Contact Hours:	42	
Course Plan Author:	Vinod M	

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23721477/23721315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

17CVL58: Concrete and Highway Materials laboratory	2
A. LABORATORY INFORMATION	
1. Lab Overview	
2. Lab Content	2
3. Lab Material	2
4. Lab Prerequisites:	3
5. General Instructions	3
6. Lab Specific Instructions	3
B. OBE PARAMETERS	3
1. Lab / Course Outcomes	
2. Lab Applications	4
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1. Course Coverage	7
2. Continuous Internal Assessment (CIA)	
D. EXPERIMENTS	
Experiment 01 : Visual soil classification	
Experiment 02 : Grain size analysis	
Experiment 03: In-situ density tests	
Experiment 04: Consistency limits	
Experiment 05 : compaction test	
Experiment 06 : Co-efficient of permeability test	
Experiment 07: Shear strength tests	
Experiment 08 : Consolidation test	
Experiment 09: Laboratory vane shear test	
Experiment 10 :Demonstration of Swell pressure test, Standard penetration test and	_
equipment	38

17CVL58 : Concrete and Highway Materials laboratory

A. LABORATORY INFORMATION

1. Lab Overview

Degree:	B.E	Program:	CV
Year / Semester :	2/5	Academic Year:	2019-20
Course Title:	Concrete and Highway Materials laboratory	Course Code:	17CVL58
Credit / L-T-P:	2 / 0-0-3	SEE Duration:	180 Minutes
Total Contact Hours:	42 Hrs	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	5/1 Experiment
Course Plan Author:	Vinod M	Sign	Dt: 03-06-2019
Checked By:	MOHAN K T	Sign	Dt: 06-06-2019

2. Lab Content

Unit	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Specific Gravity of Cement	06	Index properties	L3 Apply
2	Normal consistency	03	consistency	L3 Apply
3	Setting Time of cement	03	Setting Time	L3 Apply
4	Specific Gravity of Coarse aggregate	03	Index properties	L3 Apply
5	Impact test	03	Toughness	L3 Apply
6	Crushing strength	03	strength	L3 Apply
7	Abrasion Test	09	Hardness	L3 Apply
8	Elongation Index	03	Shape of Aggregate	L3 Apply
9	Flakiness index	03	Shape of Aggregate	L3 Apply
10	Slump cone test	06	Workability of concrete	L3 Apply
11	Vee bee consistometer test		Workability of concrete	L3 Apply
12	Compaction factor test		Workability of concrete	L3 Apply
13	Marshall Stability test		Stability and Flow	L3 Apply
14	CBR test on soil		Strength	L3 Apply

3. Lab Material

Unit	Details	Available
1	Text books	
	 Punmia B C, Soil Mechanics and Foundation Engineering, Laxmi Publications co., New Delhi. Highway Engineering Khanna and Justo Laxmi Publications co., New Delhi. 	
2	Reference books	
	Highway Materials Lab Manual by Veeraraghavan, S K Khanna, C E G Justo	Not available

3	Others (Web, Video, Simulation, Notes etc.)	
		Not Available

4. Lab Prerequisites:

-	-	Base Course:		-	_
SNo	Course	Course Name	Topic / Description	Sem	Remarks
	Code				
1	15cv42	Concrete	Fundamentals of cement, Index and	4	
		technology	Engineering Properties of aggregate etc.		

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

5. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-	
	charge in the observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the	
	readings /observations into the notebook while performing the experiment.	
5	The record of observations along with the detailed experimental procedure	
	of the experiment in the Immediate last session should be submitted and	
	certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	When the experiment is completed, should return all the	
	components/instruments taken for the purpose.	
8	Any damage of the equipment or burn-out components will be viewed	
	seriously either by putting penalty or by dismissing the total group of	
	students from the lab for the semester/year	
_	Completed lab assignments should be submitted in the form of a Lab	
	Record in which you have to write the algorithm, program code along with	
	comments and output for various inputs given	
10		

6. Lab Specific Instructions

SNo	Specific Instructions	Remarks
1	Before conducting any test, students shall come prepared with theoretical background of the corresponding test (indicated under the section theory in	
	each test).	
2	Students shall make sure to have the knowledge of using weighing balance, oven.	
3	Students shall give importance to accuracy and precision while conducting the test and interpreting the results	
	Students shall acquaint themselves with the safe and correct usage of instruments / equipments under the guidance of teaching / supporting staff of the laboratory	

B. OBE PARAMETERS

1. Lab / Course Outcomes

#	COs	Teach.	Concept	Instr Method	Asses	Blooms'
		Hours			sment	Level
					Metho	

	LABORATORY PLA	IN - CAY	2019-20			
					d	
1	Students are able to compute the index properties of aggregate by different laboratory experiments.	06	Index properties	Practical	C.IA	L3 Apply
2	Students are able to to draw the particle size distribution curve of different types of soils and classify the soils as per the result	03	consistency	Practical	C.IA	L3 Apply
3	Students are able to determine field density using sand replacement and core cutter methods, and compare the results.	03	Setting Time	Practical	C.IA	L3 Apply
4	Students are able to find the consistency limits of soil	03	Index properties	Practical	C.IA	L3 Apply
5	Students are able calculate the optimum moisture content and maximum dry density using Standard Proctor Test	03	Toughness	Practical	C.IA	L3 Apply
6	Students are able to compute the coefficient of permeability through different types of soils by constant head and falling head methods	03	strength	Practical	C.IA	L3
7	Students are able to calculate the shear strength of soil, and shear parameters from different laboratory tests. Direct shear test 'Unconfined compression testand triaxial test	09	Hardness	Practical	C.IA	L3 Apply
8	Students are able to calculate coefficients related to compressibilty and consolidation by different methods	03	Shape of Aggregate	Practical	C.IA	L3 Apply
9	Students are able to calculate the shear strength of soil, and shear parameters from laboratory Vane shear test	03	Shape of Aggregate	Practical	C.IA	L3 Apply
10	Students are able to understand the demonstration of the tests.	06	Workability of concrete	Practical		L3 Apply
-	Total	40	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Lab Applications

SNo	Application Area	CO	Level
1	Evaluate physical and index properties of the aggregate	CO1	L3
2	Ability to classify the soil	CO2	L3
3	Ability to find dry density of given aggregate	CO3	L3
4	Determination of plasticity index of aggregate	CO4	L3
5	Find OMC and MDD, plan and asses field compaction program	CO5	L3
6	Design of earth dams	CO6	L3
7	Ability to find Shear strength parameters to assess strength and deformation characteristics of aggregate	CO7	L3
8	Ability to find consolidation strength parameters to assess strength and deformation characteristics of aggregate	CO8	L3
9	Ability to find Shear strength parameters to assess strength and deformation characteristics of aggregate	CO9	L3
10	Understand In situ shear strength characteristicts	CO10	L2

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

-	Course Outcomes		Program Outcomes											
#	COs	PO ₁	РО	РО	РО	РО	РО	РО	РО	РО	PO ₁	PO ₁	PO ₁	Level
			2	3	4	5	6	7	8	9	0	1	2	

	LABORATO		<u>-AN -</u>	CAY	2019-	20								
17CVL58.1	Students are able to compute the index properties of soil by different laboratory experiments.		-	-	3	-	-	-	-	-	-	-	-	L3
	Students are able to to draw the particle size distribution curve of different types of soils and classify the soils as per the result	,	-	-	3	-	-	-	-	-	-	-	-	L3
	Students are able to determine field density using sand replacement and core cutter methods, and compare the results.		-	-	3	-	-	-	-	-	-	-	-	L3
	Students are able to find the consistency limits of aggregate		-	-	3	-	-	-	-	-	-	-	-	L3
	Students are able calculate the optimum moisture content and maximum dry density using Standard Proctor Test		-	-	3	-	-	-	-	-	-	-	-	L3
17CVL58.6	Students are able to compute the co-efficient of permeability through different types of soils by constant head and falling head methods	,	-	-		-	-	-	-	-	-	-	-	L3
17CVL58.7	Students are able to calculate the shear strength of soil, and shear parameters from different laboratory tests Direct shear test ,Unconfined compression testand triaxial test		3	-	3	-	-	-	-	-	-	-	-	L3
17CVL58.8	Students are able to calculate coefficients related to compressibilty and consolidation by different methods		3	-	3	-	-	-	-	-	-	-	-	L3
	Students are able to calculate the shear strength of soil, and shear parameters from laboratory Vane shear test		-	-	-	-	-	-	-	-	-	-	-	L3
, ,	Students are able to understand the demonstration of the tests.		-	-	-	-	-	-	-	-	-	-	-	L2
17CVL58.		2.5	3		3									
KILL KALLI	on the manning strength as 1 2 or 3													

Note: Mention the mapping strength as 1, 2, or 3

4. Mapping Justification

Mappir	ng	Mapping	Justification
		Level	
СО	PO	-	-
CO1	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to compute the Index Properties of aggregate
CO1	PO4	L3	Computation of Index Properties of soil plays the major role in determination of Engineering Properties and Subsoil Investigation.
CO2	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to classify various soils according to its particle size
CO2	PO4	L3	Classification of soil according to the grain size is essential for the field identification of soil as well as selection of test procedures, boring procedures, modifications and improvements etc
CO3	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to calculate the field density of soils
CO3	PO ₄	L3	Determination of field density is an essential for the compaction control procedure, estimation of bearing capacity, calculation of stresses on soil mass, determination of active and passive earth pressure etc.
CO4	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students

			to calculate liquid limit plastic limit and shrinkage limit. And consisstency
			indices
CO4	PO ₄	L3	Determination of plasticity index is an essential for knowing compressibility of soil.
CO ₅	PO1	L3	Application of the fundamentals of Soil Compaction will help the students to calculate the requirements of field compaction
CO ₅	PO4	L3	Determination of optimum moisture content and maximum dry density is essential for the conduct of field compaction
CO6	PO1	L3	Application of the fundamentals of Soil Water & Permeability will help the students to analyze the flow of water through the soil mass
CO7	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to compute the shear strength of various soils
CO7	PO2	L3	Computation of shear strength is unavoidable for the analysis of geohazards, foundation failures, problems in slope stability etc
CO7	PO ₄	L3	Determination of shear strength is extremely important for subsoil investigations, slope stability, construction of structures on weak soil etc.
CO8	PO2	L3	Essential for the determination of differential/total settlement in soft/problematic soil conditions
CO8	PO ₄	L3	Settlement determination is unavoidable before the construction in soft/problematic soil conditions
CO9	PO1	L3	Application of the fundamentals of Soil Mechanics will help the students to compute the shear strength of various soils
CO10	PO1	L2	Students have engineering knowledge on swelling of soil, and boring

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
		· ·			

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
11					
12					
13					
14					
15					

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Unit	Title	Teachi		No	o. of qu	estior	in Exa	am		CO	Levels
		ng	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
		Hours									
1	Visual soil classification.	06	1	-	-	-	-	-	1	CO1	L3
2	Grain size analysis	03	1	-	-	-	-	-	1	CO2	L3
3	In-situ density tests	03	1	-	-	-	-	-	1	CO3	L3
4	Consistency limits	03	-	1	-	-	-	-	1	CO4	L3
	Standard compaction test	03	-	1	-	-	-	-	1	CO5	L3
6	Co-efficient of permeability test	03	_	1	-	-	-	-	1	CO6	L3
7	Shear strength tests	09	_	-	1	-	-	-	1	CO7	L3
8	Consolidation test	03	_	-	1	-	-	-	1	CO8	L3
9	Laboratory vane shear test	03	_	-	1	-	-	-	1	CO9	L3
	Demonstration of Swell pressure	06	_	-	-	-	-	-	1	CO10	L2
	test, Standard penetration test										
	and boring equipment										
-	Total	42	3	3	3	-	_	-	10	_	-

Note: Write CO based on the theory course.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	15	CO1, CO2, CO3	L3,L3,L3
CIA Exam – 2	15	CO4 ,CO5, CO6	L3,L3,L3
CIA Exam – 3	15	CO7 ,CO8, CO9	L3,L3,L3
Assignment - 1	05	CO1, CO2, CO3	L3,L3,L3
Assignment - 2	05	CO4 ,CO5, CO6	L3,L3,L3
Assignment - 3	05	CO7 ,CO8, CO9	L3,L3,L3
Seminar - 1	-		
Seminar - 2	-		
Seminar - 3	-		
	-		
Other Activities - define -		CO1 to Co9	L2, L3, L4
Slip test			
Final CIA Marks	20	-	-

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	04 Marks
2	Record Writing	o8 Marks for each Expt
3	Internal Exam Assessment	08 Marks
4	Internal Assessment	20 Marks
5	SEE	80 Marks
-	Total	100 Marks

D. EXPERIMENTS

Experiment 01: Visual soil classification.

-	Experiment No.:	1	Marks			Date Planned	k		Da Cond	ate ucted		
1	Title	Vis	ual soil clas	sification.								
2	Course Outcomes		dents are oratory exp			te the	index	proper	ties o	f soil	by	different
3	Aim	То	determine t	he Water	r conter	t by ov	en dryi	ng meth	od an	d infra	red	moisture

		L/ (DOT)	VI OIVI I L	., (i 4 C) (i	2019 20		
		method					
4	Material / Equipment		al				
	Required	Ovencontainers					
		Balance					
		soil sample) .				
5	Theory, Formula,						
	Principle, Concept						
6	Procedure					weight with lie	
						nple in the co	ontainer and replace
		the lid take				th the lid ren	noved and maintair
							for about 24 hours.
		 Takeout th 	e conta	iner, rep	olace the	lid and find th	ne weight W3 of the
		container v					
		Determine	the wat	er conte	ent in the v	vet soil using f	ormula.
7	Diagram						
	Diagram						
8	Observation Table	Sl.No	1	2	3	4	5
		3.110	_	_	3	4	
		Container No.					
		Weight of the container W1 gm					
		Weight of					
		container and					
		wet soil W2 gm					
		Weight of					
		container and					
		dry soil W3 gm					
		Weight of dry soil (W3-W1) gm					
		Weight of wet					
		soil (W2-W1) gm					
		Water content					
		={(W2-W3)/(W3- W1)}*100					
		Average content of the soil					
		or trie soit					
9	Sample Calculations						
	Graphs, Outputs	• -					
	1	• -					
11	Results & Analysis	• -					
	A 11 11 A	• -					
	Application Areas	Evaluate physical a	and inde	ex prope	erties of the	SOIL	
	Remarks Faculty Signature						
	with Date						

_	Experiment No.:	1 Marks	ORATORY F	PLAN - CAY 2019 Date	-20		Dat	:e		
	•			Planne	d		Condu			
_	Title	Visual soil class								
		Students are a laboratory expe	riments.	·						
4	Aim Material / Equipment Required	PycnomBalanceWash boGlass ro	nual eter with , sensitive ottle with d, about	a conical cap	o screwe illed wat 3 mm di	ed at its t		ity bo	<u>ttle</u>	method
		Specific gravity and uses • GT ={(M2	-true spe 2 -M1) - (I		apparen 2 -M1)	·				
6	Procedure	the Pycric Introduction Pycnon washer Fill the thorouge aside for water to outside Clean to top of the mass to Repeat	nometer of the control of the contro	meter or der with its cap a 400 g of o cord the ma th the soil (Ma eter with dis- the soil using hrs. At the e e top of the ord its mass (I) meter thorough. Dry the I rest 0.2 g (M4 s (2) and (3) the pecific gravity	nd wash ven driess of the 2). tilled was g the gland of this conical M3). Lighly. Fire conical of the conical o	er, accu ed coars ee Pycno ater to h ass rod. s period cap. Dr tl it with eter fror	rate to : se grain ometer half its I Keep I, fill the ry the distille n outsi	1.0 g (ned s with heigh the e Pycro Pycro d wat de ar	(MI). oil its t, a ntire nome	in to the cap and mix it e system eter with eter from up to the ecord its
7	Diagram	Ho	Rubbee washer single state of the state of t							
8	Observation Table	Determination I	No.	1	2		3			
		Pycnometer No	,							1
		Mass of Pycr (M1) g								
		Mass of (Pycr or Density bott (M2) g								
		Mass of (Pycr or Density bott + water) (M3) g								
		Mass of (Pycr or Density b water) (M4) g								
		Specific gravity]
		Average gravity at temperature (G	specific lab T)							
		Average	specific							

		gravity at 27°C (G27)
9	Sample Calculations	
10	Graphs, Outputs	• -
		• -
11	Results & Analysis	• -
	-	• -
12	Application Areas	Evaluate physical and index properties of the soil
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 02: Grain size analysis

-	Experiment No.:	2	Marks		Date Planned	C	Date Conducted	
1	Title	Grain size	analysis			'		
2	Course Outcomes				ne particle siz s per the resu		curve of diff	erent types
3	Aim	To deterr	etermine the grain size distribution of the given soil by dry sieving.					
	Material / Equipment Required	• S m	nicron, 212 r Brushes to d Iechanical s alance rays	nicron, 150 clean the s sieve shak		nicron.	micron, 425 ı	micron, 300
	Theory, Formula, Principle, Concept	size fract	ion and cla	ys; particl	oils: IS system, e size distribu s; gradation c	tion curves, c	characteristic	
6	Procedure,	• F si si e e e e e e e e e e e e e e e e e	op and 75 receiver at the set of haker for a rearefully contact and alculate the lot a graphiameter in ancompassing ecord the valculate condition of the val	micron siene bottom of sieves to minimum allect and also in the cumula end percentant (alcoholder) alues of the ploop of t	o the mechar of 10 minutes. record the m the pan. tive mass of age finer. ntage finer (a ng x-axis in	ottom. Place nical sieve should be soil fraction of the second fract	a cover at the aker. Operate oil fraction of the certained on the certain of the certained on the certain of the certai	the top and the the sieve retained on each sieve. The particle ooth curve percentage
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph							
8	Observation Table,	Total ma	Particle	Mass D, retaine	Cumulated e mas reatained	iv %	% finer	

LABORATORY PLAN - CAY 2019-20

) () () () () () () () () () (
		4.75 mm	4.75 mm					
		2.36 mm	2.36 mm					
		1.18 mm	1.18 mm					
		600 micron	0.6 mm					
		425 micron	0.425 mm					
		300 micron	0.3 mm					
		150 micron	0.15 mm					
		75 micron	0.075 mm					
		Pan	-					
9	Sample Calculations	• (i) % • (i) C • (ii) C	S sand = (ii) $%D_{10} = (ii) D_{30} = (ii) coefficient of Coefficient o$	f uniformity f curvature	clay size = = C _U = D ₆₀ / = C _C =(D ₃₀) ² /	grained. $D_{10} = \underline{\hspace{1cm}}$ $(O_{60} \times D_{10}) = \underline{\hspace{1cm}}$ ssification	 	soil:
	Graphs, Outputs							
	Results & Analysis							
-		Ability to cl	assify the so	oil				
	Remarks Faculty Signature							
14	Faculty Signature with Date							

-	Experiment No.:	2	Marks		Date		Date	
					Planned		Conducted	
1	Title	Grain	size analysis	5	'			
2	Course Outcomes	Stude	ents are able	to determine	e the grain siz	e distributio	n of soil	
3	Aim	To de	termine the	grain size dis	tribution of th	ne given soil	by Hydrome	ter analysis
4	Material / Equipment Required	•	Hydromei Mechanic Balance Dispersio	oo ml capacity ter al stirrer n agents- Soc atically contro	dium hexa me	eta phospha	te and sodiu	m carbonate
5	Theory, Formula Principle, Concept			alysis: Princip rometer, corr				er analysis;
6	Procedure		Determine Take abou Subject t matter or Dissolve carbonate capacity j 1000 ml composite	the hydromete the meniscult 50 g of ove he soil to procalcium com 3.3 g of sodition in 100 ml of ar and add dition (This disperse correction), measured qu	us correction, in dried soil size-treatment pounds, if ne turn hexa medistilled water stilled water sion agent s	ample passing to remove cessary. The phosphater of the make the solution is a second control of the solution is a second control of the solution is a second control of the solution of the solution is a second control of the solution of the second control of the se	soluble salt ate and 0.7 of the solution volume of the required for	s or organic g of sodium to 1000 ml e solution to getting the

prepared by dissolving 3.3 g of sodium hexa meta phosphate and 0.7 g of sodium carbonate in distilled water to the beaker. Warm the soil suspension gently for about 10 minutes. Transfer the soil suspension to the cup of a mechanical stirrer using about 100 ml of distilled water. Stir the suspension for about 15 minutes. Transfer the stirred soil suspension to another 1000 ml capacity measuring jar. Add distilled water to the suspension to make its volume to 1000 ml. Place suitable covers on the top of the two 1000 ml measuring jars one containing the dispersion agent solution and the other containing the soil suspension. Shake the contents in the two jars vigorously and place them slowly on a level platform. Start a stop watch immediately. Insert the hydrometer in to the jar containing the soil suspension slowly and allow it to float freely. Note down the hydrometer readings corresponding to upper meniscus after suitable time intervals or note down the time intervals corresponding to well defined hydrometer readings. After 4 minutes reading, take out the hydrometer from the jar, rinse it with distilled water and allow it to stand in another 1000 ml jar containing distilled water. Insert the hydrometer in to the jar containing soil suspension from time to time and note down the hydrometer readings and corresponding time intervals. After removing the hydrometer from the jar each time, rinse it with distilled water and store it in the jar containing distilled water. Record the temperature of the soil suspension and the composite correction in the beginning of the test and also after each time the hydrometer reading is taken beyond 15 minutes period. Calculate the equivalent diameter of the soil particles corresponding to the noted time intervals (D) and also the corresponding values of percentage finer based on the dry mass of the soil sample taken for the test (N') and based on the total mass of the dry soil sample taken for the grain size analysis(N). Carry out the test till the equivalent diameter of the particles is less than 2 um. Using the values of equivalent diameter of the particles (D) and the values of corresponding percentage finer (N), plot the grain size distribution curve. From the plotted curve, note down the percentage of silt size and clay size fractions present in the soil. 7 Block, Circuit. Model Diagram, Reaction Equation, Expected Graph 8 Observation Table Mass of total dry soil taken for the analysis (M) = -----Mass of the dry soil fraction passing 75 μ sieve (M') =-----g Mass of the dry soil sample taken for the test (Md) = -----Specific gravity of soil solids passing 75 μ sieve (G) = -----Hydrometer No.: Meniscus correction (Cm) % Date Time Elaps Hydr Tem Com Rh = Effec D R= % omet | perat | posit | Rh' + Rh'+C tive finer finer ed time er ure Cm dept base base (t) readi corre h d d (HR) ction on M' on M ng (C) (Rh')

9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	
12	Application Areas	Ability to classify the soil
13	Remarks	
	Faculty Signature	
	with Date	

Experiment 03: In-situ density tests

-	Experiment No.:	3	Marks		Date Planned		Date Conducted	
1	Title	In-siti	u density tes	ts			Jonatota	
2	Course Outcomes				ne field dens	ity using sar	nd replaceme	ent and core
				nd compare			·	
	Aim	To de			of the soil <i>in-s</i>	<i>itu</i> by sand r	eplacement	method:
4	Material / Equipment Required		it by a shu Cylindrica internal de Glass plat Metal tray of the san Tools for e Balance a Container	ring cylinder atter. I calibrating capth, with a flee, about 45cm with a central pouring coexcavating the courate to 10 s for water coatically contr	container, 100 lange. m square and al circular hol ne at its outlo e hole. g. ontent detern olled hot air o	o mm interna d 1cm thick. e of diamete et. nination. oven.	al diameter and the equal to the	e diameter
5	Theory, Formula,	Sand	and retain	ed on the 30	ed natural sar o micron IS s determining i	ieve.		
	Principle, Concept						rioity practi	
6	Procedure		Fill the sa top. Determine is to be m Keep the to run out Remove t glass plat portion or cylinder to Measure thence, de Place the Open the the shutter cylinder a sand back Calculate etermination Level the determine Keep the about 15	e the total initial aintained concylinder on at the cylinder of the cylinder at the cylinder with the inner dial termine the cylinder with shutter, and er when no fund record its at the density of the dry desurface whered, metal tray of cm deep. Concert concerts and concerts of the cylinder with the concerts and the concerts are the cylinder with the concerts and the concerts are the cylinder with the cylind	shutter where and record the represents the pouring cyling e constant mater and he volume of the head sand concert allow the sand concert allow the sand in the ensity of the serve the in-situal the level subtlect the expension of the server and the level subtlect the expension of the server and the level subtlect the expension of the server and the level subtlect the expension of the server and the level subtlect the expension of the server and the level subtlect the expension of the server and the level subtlect the expension of the server and the server	he cylinder whout the test open the shann movement mass of the mass M1. The example of the example of the mass of the example of the example of the mass of the example of the example of the mass of the example of	with the sand t. nutter and all lent of sand collected sand fillithe sand baccalibrating container. The top of the into the containing sand astant mass the soil is received a circle in the tray.	d (M1), which ow the sand is observed. ected on the ng the cone ack into the ontainer and he container. tainer. Close Remove the (M3). Put the

		LABORATORY PLAN - CAY 2019-20 moisture content determination.
		 Remove the tray and place the cylinder with sand on the excavated hole. Open the shutter, and allow the sand to run into the hole. When the no further movement of the sand is seen, close the shutter. Determine the mass of the cylinder with the remaining sand in it (M4). Determine the bulk density, field water content and field dry density of the soil.
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table	Observations and Calculations
		(a) Determination of the bulk density of sand:
		1. Inside diameter of the calibrating container (d) cm = 2. Inside height of the calibrating container (h) cm =
		3. Volume of the calibrating container (Vc) cm3 =
		4. Mass of the (sand + cylinder) before pouring (M1) g. =
		5. Mass of the sand in the cone (M2) g. =
		6. Mass of the (sand + cylinder), after pouring into
		the calibrating container (M3) g. =
		7. Mass of the sand, filling the calibrating container
		(Msand) = (M1 – M3 – M2) g. =
		8. Bulk density of the sand (×s) = (Msand / Vc) g/cm3 =
		(b) Determination of the bulk density of the soil in-situ:
		1. Mass of the wet soil excavated from the hole (M) g. =
		2. Mass of (sand + cylinder) after pouring into
		the hole (M4) g. =
		3. Mass of sand in the hole (Mh) = (M1- M4 - M2) g. =
		4. Volume of the hole (V) cm3 = 5. Bulk density of the soil in-situ (X b
9	Sample	D. Dath donaity of the softh of situation
	Calculations	
	Graphs, Outputs	
		Average insitu field dry density: =
_		Ability to find dry density of given soil
_	Remarks	
14	Faculty Signature	
	with Date	

-	Experiment No.:	3	Marks		Date		Date	
					Planned		Conducted	
1	Title	In-situ	u density tes	ts				
2	Course Outcomes	Stude	ents are able	to determin	ie field dens	ity using sar	nd replaceme	ent and core
		cutte	r methods, a	nd compare	the results.			
3	Aim	To de	termine the	dry density o	f the soil <i>in-s</i>	itu by core c	utter method	d:
4	Material /	a)						mm internal
	Equipment		diameter	with awall thi	ckness of 3 r	nm, bevelled	d at one end.	
	Required	b.			_			with a wall
			thickness	of 7.5 mm, w	ith a lip to e	nable it to b	e fitted on th	ne top of the
			core-cutte					
		C)	J	mmer				
		d	, , , , , , , , ,					
		e.		j tool or picka	ixe or spade			
		f)		_				
		g		accurate to				
		h.		ers for water				
		i)		statically cor				
5	Theory, Formula,	Field	density is d	lefined as we	eight per un	t volume of	soil mass in	the field at

	Principle, Concept					
		Equations	s are; vt/(1+w) gm/cm³			
			r yd= yt/(1+w) kN/m³			
			d = dry density, ■γd = dry unit weight, ×ρ	ot= field r	noist dens	ity, γt =field
		moist uni	t weight, w =water content, ■γw = unit wei	ight of w	ater = 9.81	kN/m³
6	Procedure,		etermine the internal volume of the core	e-cutter '	Vc in cm³.	And weigh
	Program, Activity, Algorithm, Pseudo		ne cutter accurate to 1 gm. elect the area in the field where the dens	ity is roa	uired to be	a found out
	Code		nd level it.	ity is req	ulled to be	Fiouria out
		c) P	lace the cutter over the ground with the o			
			ne hammer until top of the cutter is just be		_	
			emove the soil outside the cutter by digg ne cutter. Take out the cutter with remove			
			f the cutter with knife and straight edge.	the dot	ly and thin	DOLLI SIGCS
			etermine mass of the cutter with the soil (
			ake a small sample of soil from the site o	f water c	content de	termination
			nd seal it properly. he field test may be repeated at other pla	ces if rec	nuired	
		9, .			, (c c c	
		Tho wata	r content of sample collected is determin	od in the	Jahoraton	, ac partha
			e explained earlier. Use the above equation			
7	Block, Circuit,					•
	Model Diagram,					
	Reaction Equation, Expected Graph					
8		Length of	f core cutter l=cm			
	Look-up Table,					
	Output	Diameter	of core cutter d=cm			
		Volume c	of core cutter=Vc=cm			
		Sl.N	Particulars		Test nos.	
		0. 1	Mass of empty cutter (M1), gms	1	2	3
			. ,			
		2	Mass of cutter + wet soil (M2), gms			
		3	Volume of core cutter (Vc) cm ³			
		4	Mass of empty container (M3), gms			
		5	Mass of container + wet soil (M4), gms			
			1 (142)			
		6	Mass of container + dry soil (M5), gms			I
			1			
		7	Water content (w)=(M4-M5)/(M5-M3)			
		7	Water content (w)=(M4-M5)/(M5-M3) Field moist density ρt (kN/m³)			
9	Sample	8	Field moist density ρt (kN/m³)			

reserved.

(c) ASTM TOOL

(e) SOIL CAKE AFTER TEST

LABORATORY PLAN - CAY 2019-20

10	Graphs, Outputs	
11	Results & Analysis	Average insitu field dry density: =
12	Application Areas	Ability to find dry density of given soil
13	Remarks	
14	Faculty Signature	
	with Date	

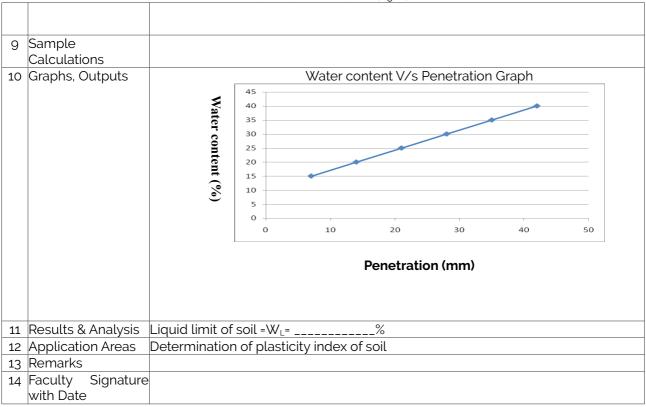
Experiment 04: Consistency limits

-	Experiment No.:	4	Marks		Date Planned		Date Conducted				
1	Title	Consis	stency limits	5			1				
2	Course Outcomes			to find the c							
3	Aim			the liquid lim							
5	Material / Equipment Required Theory, Formula	c) d) e) f)	tools. b) Evaporating dishes, wash bottle etc. c) Balance accurate to 0.01 g. d) Airtight container to determine water content. e) Oven to maintain temperature at 105 °C to 110 °C.								
5		a soil can be remolded. Consistency limits may be categorized into three limits called Atterberg limits. They are 1) Liquid limit 2) Plastic limit and 3) Shrinkage limit The liquid limit is the moisture content at which the groove, formed by a standard tool into the sample of soil taken in the standard cup, closes for 10 mm on being given 25 blows in a standard manner. This is the limiting moisture content at which the cohesive soil passes from liquid state to plastic state.									
6	Algorithm, Pseudo Code	Flow index If=(w1-w2)/log (N2/N1)= a)A representative sample of mass of about 120 gm passing through 425 μ Isieve is taken for the test. Mix the soil in an evaporating dish with distilled water to form a uniform paste. b) Adjust the cup of the device so that the fall of the cup on to the hard rubbe base is 10 mm. c) Transfer the portion of the paste to the cup of liquid limit device. Allow some time for the soil to have uniform distribution of water. d)Level the soil topsoil so that the maximum depth of soil is 12 mm. A channel of 11 mm wide at the top, 2 mm at the bottom and 8 mm deep is cut by the grooving tool. The grooving tool is held normal to the cup and the groove is cut through the sample along the symmetrical axis of the top. e)The handle of the device is turned at a rate of about 2 revolutions per second and the number of blows necessary to close the groove along the bottom distance of 12 mm is counted. A sample of soil which closes the groove is collected f)The soil in the cup is re-mixed thoroughly (adding some more soil if required some quantity of water which changes the consistency of soil, repeat the process. At least 4 tests should be conducted by adjusting the water contents of the soil in the cup in such a way that the number of blow required to close the groove may fall within the range of 5 to 40 blows. A plot of water content against the log of blows is made as shown in figure The water content at 25 blows gives the liquid limit.									
7	Block, Circuit Model Diagram Reaction Equation Expected Graph	,	BRASS CUI	50 mm HARD RUB	BER BASE	TING SCREW	BRASS CL				

		LA	ABORATORY PLAN -	CAY 2019-20						
	Observation Table,	Trail No	1	2	3	4				
	Look-up Table, Output	No of blows (N)								
		Weight of Container (W1)								
		Weight of Container+Wet soil (W2)								
		Weight of Container+dry soil (W3)								
		Water content w=(W2-W3)/ (W3-W1)								
	Sample Calculations									
	Graphs, Outputs	Liquid limit (for N	25 (%) 18 (%) 19							
11	Results & Analysis	Flow index If=								
		 Liquid Limit=	%							
12	Application Areas		of plasticity index	of soil						
	Remarks									
	Faculty Signature with Date									

-	Experiment No.:	4	Marks	Date Planned	Date Conducted					
1	Title	Consis	stency limits							
2	Course Outcomes	Stude	udents are able to find the consistency limits of soil							
3	Aim	Deterr	Petermination of the Liquid Limit by Cone Penetration method							
4	Material /	a)	Cone Pen	trometer						
	Equipment Required	b)	Spatula.							
5	Theory, Formula	The lic	quid limit is (etermined based on pen	etration resistance of soil.					
	Principle, Concept									

6	Procedure,	
	Program,	Activity,
	Algorithm,	Pseudo
	Code	

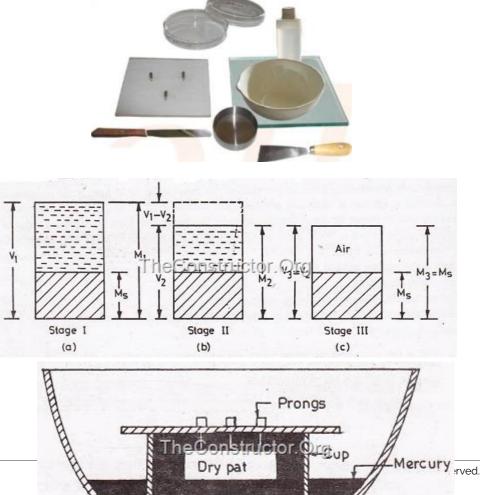

- a) About 120 gm. of air dried soil from thoroughly mixed portion of material passing 425 micron IS sieve is obtained.
- b) Distilled water is mixed to the soil thus obtained in a mixing disc to form a uniform paste.
- c) Then the wet soil paste is transferred to the cylindrical cup of cone penetrometer apparatus, ensuring that no air is trapped in this process.
- d) Finally the wet soil is leveled up to the top of the cup and placed on the base of the cone penetrometer apparatus.
- e) The penetrometer is so adjusted that the cone point just touches the surface of the soil paste in the cup and the initial ready is to be taken.
- The vertical clamp is then released allowing the cone to penetrate into soil paste under its own weight for 5 seconds. After 5 seconds the penetration of the cone is noted to the nearest millimeter.
- g) The test is repeated at least to have four sets of values of penetration in the range of 14 to 28 mm.
- h) The exact moisture content of each trial is determined
- i) Draw a graph representing water content, (ω) on y-axis and cone penetration on x-axis.
- j) The water content corresponding to a cone penetration of 20 mm is taken as liquid limit.

7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

8 Observation Table, Look-up Table, Output

€,						
Sl. No.	Cup No.	Weight of cup (w ₁)	Weight of cup + Wet soil (w₂)	Weight of cup + Dry soil (w ₃)	Water Content $\omega = \frac{(w_2 - w_3 - w_3 - w_3)}{(w_3 - w_3)}$	Penetrati on (mm)
1						
2						
3						
4						
5						
6						
7						
8						

-	Experiment No.:	4	Marks			ate		Date Conducted		
1	Title	Consis	stency limits	<u> </u>			-	750114461644		
2	Course Outcomes	Studer	nts are able	to find the co	onsist	tency li	mits of soil			
3	Aim	Determination of Plastic Limit of the soil								
4	Material /			evaporating (dish.					
	Equipment		b) Flat glass plate.							
	Required			ccurate to 0.		.15 . 1 . 21 .	12.			
_	The same Campanda			for water co					ala anil atauta	
5	Theory, Formula, Principle, Concept							ontent at whic	en soil starts	
	Filicipie, Concept	Ciuiii	ung when i	otted into this	eaus	01 311111	rularrieter.			
		Plastic	ity Index(Ip)) = (LL – PL)						
6					nple (of fine-	grained soil	of about 20 g	gms passing	
								oroughly on a		
	Algorithm, Pseudo								m diameter.	
				for the prope						
								read on a glas		
								a uniform thro liameter, and		
								ne to diamete		
								moisture in tl		
		proces	ss has to co	ntinue till th	e sar	nple cr	umbles just	at about 3 m	ım diameter.	
				led soil and						
								nt determinati	ion.	
		d) The	water cont	ent so obtain	ed is	the pla	stic limit of	the soil		
,	Block, Circuit, Model Diagram,									
	Reaction Equation,									
	Expected Graph									
8	Observation Table,	Trail N			1	2	3 4			
	Look-up Table,			/V//-V	1	_	3 4			
	Output	Weigh	nt of Contain	ner (W1)						


LABORATORY	DI ANI -	\cap	2010-20
LADUKATUKT	PLAIN -	CAI	2019-20

	1	<u> </u>						
		Weight of Container+Wet soil (W2)						
		Weight of Container+dry soil (W3)						
		Water content w=(W2-W3)/ (W3-W1)						
					•		J	
9	Sample							
	Calculations							
10	Graphs, Outputs							
11	Results & Analysis	The Plastic limit of soil is = $W_{P=}$ -				%	,)	
		Plasticity Index (Ip)=						
		,						
12	Application Areas	Determination of plasticity inde	x of s	soil				
	Remarks							
	Faculty Signature							
14	with Date							
	with Date							

	I .										
_	Experiment No.:	4	Marks		Date	Date					
					Planned	Conducted					
	Title	Consistency limits comes Students are able to find the consistency limits of soil									
2	Course Outcomes	1									
	Aim	+			ELimit of soil:	•					
4	Material / Equipment Required	b) c) d)	bottom.								
		e) f)	e) Spatula balance accurate to 0.01 g, oven etc. f) Mercury. g) Desiccator and other accessories.								
5											
		$SR = \frac{M_s}{V_2 \rho_w}$ Shrinkage ratio, $V_s = \frac{V_1 - V_2}{V_2} \times 100$ Volumetric shrinkage									
6	Procedure, Program, Activity, Algorithm, Pseudo Code		shrinkage pressing t mass of t the unit r	dish to ov he plain glas ne mercury nass of me	erflowing with ss plate firmly in the shrinkag rcury gives th	n, empty shrinkage dish. Fill the mercury. Remove the excess by over the top of the dish. Record the ge dish. This mass when divided by e volume of the dish which itself I mass to be placed in the shrinkage					

- b) Take about 100 gm of soil sample passing 425 micron IS sieve.
- c) Place about 30 g of soil in evaporating dish and mix it thoroughly with distilled water such that all the soil voids are completely filled and the soil becomes pasty enough to be readily worked into the shrinkage dish without entrapping air bubbles. The water content of the soil paste shall be approximately equal to the liquid limit of the soil.
- d) Coat the inside surface of the shrinkage dish with a thin layer of silicon grease to prevent the adhesion of the soil to the dish. Fill the shrinkage dish by well mixed soil paste to one third its volume and tap it on a firm cushioned surface. Place some more soil and repeat this process until the paste is thoroughly compacted and all included air has been removed. When the dish is completely filled up, strike off the excess soil paste with a straight edge and wipe off all the soil paste adhering to the outside surface of the shrinkage dish.
- e) Record the mass of the shrinkage dish with the wet soil mass in it. Allow the soil pat to dry in air until the colour of the pat turns from dark to light, which may take one day to about a week depending upon the type of soil. Then, dry the pat in an oven to constant mass. Cool it in a desiccator and record the mass of the shrinkage dish with the dry soil pat immediately.
- f) Fill the glass cup to overflowing with mercury and remove the excess by pressing the glass with three prongs. Place the cup with mercury in the evaporating dish without spilling any mercury from the cup. Place the oven dried soil pat on the surface of the mercury in the cup. Then, carefully force the pat into the mercury by means of glas plate with prongs. Collect the displaced mercury and record its mass. Determine its volume, which itself represents the volume of the dry soil pat.
- g) Conduct three trials for each soil and report the average value of the shrinkage limit. If any individual value varies from the average by ± 2 %, discarded the test results and repeat the test.

7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

		LAI	BORATORY PLAN - CAY 2019-	-20	
8	Observation Tab				
	Look-up Tab	le, _{Sl.no}	Particulars	1	2
	Output	1	Mass of empty		
		1	mercury dish		
		2	Mass of mercury		
		2	dish, with mercury		
			equal to volume of		
			the shrinkage dish		
		3	Mass of mercury =		
			(2) - (1)		
		4	Volume of		
		'	shrinkage dish V ₁ =		
			(3)/13.6		
		5	Mass of shrinkage		
		5	dish		
		6	Mass of shrinkage		
			dish + wet soil		
		7	Mass of wet soil		
		7	$M_1 = (6) - (5)$		
		8	Mass of shrinkage		
			dish + dry soil		
		9	Mass of dry soil		
			$M_{s}^{=}(8)-(5)$		
		10	Mass of mercury		
			dish + mercury		
			equal to in volume		
			of dry pat		
		11	Mass of mercury		
			displaced by dry		
			pat =(10) - (1)		
		12			
		12	Volume of dry pat V ₂ = (11)/13.6		
			2 11// 13.0		
9	Sample				
	Calculations				
	Graphs, Outputs				
11	Results & Analysi	s Ws=% S.R=			
		S.R= V.S=			
12	Application Areas		plasticity index of soil		
	Remarks		,		
14	Faculty Signatu	ıre			
	with Date				

Experiment 05: compaction test

-	Experiment No.:	5	Marks		Date Planned		Date Conducted				
1	Title	com	paction test								
2	Course Outcomes			e calculate t ndard Procto		moisture co	ntent and m	aximum dry			
3	Aim	Mois	Moisture content –Dry density relationship by Standard Proctor compaction test								
4	Material / Equipment Required	100 r detachigh. 2. A n free f 3. A s 4. 4.7: 5. Ba (b) wi 6. The 7. Airl	1. A cylindrical metal mould of capacity 1000 cm 3, with an internal diameter of 100 mm and an internal affective height of 127.3 mm. The mould is fitted with a detachable base plate and a removable extension collar approximately 60 mm high. 2. A metal rammer of 50 mm diameter with a circular face and mass 2.6 kg with a free fall of 310 mm. 3. A steel straight edge about 30 cm in length and with one beveled edge. 4. 4.75 mm l.S. sieve 5. Balance – (a) with a capacity of 10 kg and accuracy of 1 g (b) with a capacity of 200 g and accuracy of 0.01 g 6. Thermostatically controlled hot air oven. 7. Airtight and non-corrodible containers for water content determination 8. Mixing tools like tray, trowel and spatula.								
5	Theory, Formula Principle, Concept		·								
6	Procedure, Program, Activity Algorithm, Pseudo Code	hence 2. Tall suital soils, mois (w p soil). abou 3. Cle the n 4. Recolla kg rashou each laying top o 5. Remoul comp 6. Re	e, calculate of the mould move the content of the mould move the c	the volume of air dries of water de of 4 to 6% a p -8)% would bill in a sealed ld with the bit on a solid thoroughly. In three equal bed from a homely distribute compacte yers. The final after the collollar and level of then, recording of the propertion of the compacted sompacted sompa	of the mould. ed soil passir pending on and for cohes d be suitable d container for case plate an base such as Compact the l layers, each leight to 310r led over the d soil shall le lat layer shall plat layer shall plat is removed el off the cord d the mass cools	Compare the ng 4.75mm Is the soil type ive soils, an ite, where with por saturation directord its reconcrete flower moist soil is layer being mm above the surface of each be roughened by the mould of the mould from the missing the soil of the mould the soil of the soil of the mould the soil of the soi	(For sandy a nitial moistur is the plastic for a minimu mass. Attach	dard values. mix it with a and gravelly e content of a limit of the am period of the collar to alld, with the average of a surface of a tula before a bove the e top of the se plate and ce it on the			

		7. M Ado and 8. C con 9. P alor	determination. Mix the remaining soil with the reminder of the originally mixed soil in the tray. Add water in suitable increments to the soil sample and mix the soil thoroughly not repeat the above procedure. Conduct a minimum of 5 determinations such that the optimum moisture ontent lies within this range. Plot the Indian Standard light compaction curve (w % along x-axis and X d long y- axis). Obtain OMC and X d max from the plotted curve. Plot also the CAV line.										
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph												
8	Observation Table,	Heiq Volu Mas	meter of the mould (D) = ght of the mould (H) = ume of the mould (V) =s ss of the rammer=2.6 kg e fall of the rammer=310 mm	cm									
			Test No.	1	2	3	4						
			Mass of empty mould M ₁ gm Volume of mould, cm ³ Mass of mould + sample,M ₂ ,gm Mass of wet soil, M,gm Wet density, ρ _t g/cm ³ Water content, w% Dry density, ρ _d , gm/cm ³ W1 for calculation % of saturation line ρ _d , gm/cm ³ for American	Compe	Section Zero air voids (Saturation ouve)								
9	Sample		Š	Optimum moisture cor (OMC)									
10	Calculations Graphs, Outputs			oontent (w)									
11			ximum dry density ρd = g/cm										
12			timum moisture content, w =		on program								

13 Remarks	
14 Faculty Signature	
with Date	

-	Experiment No.:	5	Marks		Date Planned	Date Conducted					
1	Title	com	paction test	1							
2	Course Outcomes					moisture content and maximum dry					
			ty using Star								
	Aim					by Modified Proctor compaction test 00 cm 3, with an internal diameter of					
4	Material / Equipment Required	150 n detachigh. 2. A m free f 3. A si 4. 4.75	on mm and an internal affective height of 127.3 mm. The mould is fitted with a etachable base plate and a removable extension collar approximately 60 mm gh. A metal rammer of 50 mm diameter with a circular face and mass 4.9 kg with a ee fall of 450 mm. A steel straight edge about 30 cm in length and with one beveled edge. 4.75 mm I.S. sieve Balance – (a) with a capacity of 10 kg and accuracy of 1 g								
		(b) wi	th a capacity	of 200 g and	d accuracy of	f 0.01 g					
					hot air oven.						
						r water content determination					
5	Theory, Formula	-			and spatula.						
5	Principle, Concept	'		sity $\rho t = (M$							
			Dry densi	ity $\rho d = \rho t/($	1 + w						
			Dry densi		ero air voids						
					GPw/(1 + (w	,,					
6		calcu 2. Tak suitak soils, moist plasti minin 3. Cle the m 4. Rel collar kg rai shoul each laying top o 5. Rei moul comp 6. Re mixin deter 7. Mix Add v	late the volume about 5 kple amount an initial manure content or limit of the num period of the mould. Place mix the soil of attached, in more the nould of the mould of the condition. The remaining of the mould of the remaining of the mould of the moul	ime of the mag of air dries of water depositure control of (w p -10)? e soil). Keep of about 16 had with the bit on a solid but thoroughly. In five equal led from a healter the collector of the compacted vers. The final after the collector of the compacted of a representation of the compacted so a represen	ould. Compand soil passing pending on the cent of 4 to 6 to	ht of the cylindrical mould and hence, are them with standard values. Ing 4.75mm IS sieve and mix it with a sine soil type (For sandy and gravelly 6% and for cohesive soils, an initial 6 would be suitable, where w p is the a sealed container for saturation for a director its mass. Attach the collar to concrete floor. It is mould, with the layer being given 25 blows from a 4.9 mm above the soil surface. The blows surface of each layer. The surface of the project not more than 6 mm above the soil surface to the top of the first the mould with the base plate and from the mould and place it on the ple of the specimen for water content of the originally mixed soil in the tray. It is sample and mix the soil thoroughly ons such that the optimum moisture					

		content lies within this range. 9. Plot the Indian Standard light compaction curve (w % along x-axis and X d along y- axis). Obtain OMC and X d max from the plotted curve. Plot also the ZAV line.										
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph											
	Look-up Table, Output	emeter of the mould (D) = cm eight of the mould (H) = cm lume of the mould (V) = cm ³ eass of the rammer=4.9 kg ee fall of the rammer=450 mm										
		Test No. 1 2 3 4										
		Mass of empty mould M ₁ gm Volume of mould, cm ³ Mass of mould + sample,M ₂ ,gm Mass of wet soil, M,gm Wet density, × ₁ g/cm ³ Water content, w% Dry density, × _d , gm/cm ³ W1 for calculation of saturation line % × _d , gm/cm ³ for S=100% × _d , gm/cm ³ for S=80%										
	Sample Calculations											
10	Graphs, Outputs	Max.dry density (Y _d max) Compaction curve Zero air voids (Saturation curve) Optimum moisture content (OMC) Ory side										
11		Maximum dry density ρd = g/cm3 Optimum moisture content, w = %										
	Application Areas	Find OMC and MDD, plan and asses field compaction program										
	Remarks											
	Faculty Signature with Date											

Experiment o6: Co-efficient of permeability test

-	Experiment No.:	6	Marks		Date Planned		Date Conducted					
1	Title	Со-е	fficient of pe	rmeability te			Jonadica					
2	Course Outcomes							ugh different				
3	Aim			constant head Co-efficient of				nstant Head				
	,					,	, ap. 10 .0 , 0 0					
			method									
	Material /	a		it head perme cal setup the			ically in the fi	gure.				
	Equipment Required			ternal diame								
				fective heigh								
				etacnable co rainage base			d 60 mm hei	gnt.				
		_) Weighing	balance, and	d other acces	sories.						
	Theory, Formula, Principle, Concept	Perm	neability of so	oil can be det	ermined fron	n Darcy's La	W.					
	rinciple, concept		e equation to determine the permeability of soil using constant head rmeability test is given by:									
			k = (Q(ST))/(A (ST) N(ST)) W	here, k = coe	efficient of pe	ermeability					
			Q = volume d	of water colle	cted in time	t						
			h = head cau	_								
			A = cross sec	tional area o	f sample							
			L = length of	sample								
	Procedure,											
	Algorithm, Pseudo											
	Code	b)Select a representative soil mass of about 2.5 kg properly mixed.										
				the mould uitable comp			required dry	y density by				
		d)Set	the assemb	ly as shown i	n figure after	saturating t	he porous sto	ones.				
		e)The	e water supp	ly is properly	adjusted to r	maintain cor	nstant head.					
				and saturate me to remov			vater to flow	through for a				
		flow	through the :		ct water in a	graduated ja	ar starting sin	the water to nultaneously				
		h)Rep inter\		three times	and determir	ne the avera	ge of Q for th	e same time				
			asure the hea he sample.	ad h, length c	of sample L, a	and calculat	e the cross s	ectional area				
		j)Calc	culate k by m	naking use of	equation							

			LABORATORY PLAIN - CAY 20	319 20	
7	Block, Circuit,				
	Model Diagram,				
	Reaction Equation,				
	Expected Graph				
8	Observation Table,	Length of Sc	oil sample L=cm		
			Soil sample D=cm		
	Output	Area of soil s	sample A=		
		Constant hea	ad h=cm		
		Sl.No	Quantity of water	Time t=sec	k=(QL)/(Ath)
		31.110	Q=ml	Time t See	(cm/sec)
		1			
		2			
		3			
		4			
				*	-
9	Sample				
	Calculations				
10	Graphs, Outputs				
11	Results & Analysis	Coefficient o	f Permeability of soil k=	cm	/sec
12	Application Areas	Design of ea			
	Remarks				
	Faculty Signature				
	with Date				
	I.	1			

-	Experiment No.:	6	Marks		Date Planned		Date Conducted				
1	Title	Co-effi	cient of pe	rmeability te	st		I				
2	Course Outcomes	Studer	nts are able	to compute			•	ugh different			
3			termination of Co-efficient of Permeablity of a soil sample by Falling Head rmeability Test for fine grained soils.								
4	Material / Equipment Required	d) e) f)	e) For a typical setup the following dimensions are used i. Internal diameter of the mould = 100 mm. ii. Effective height of the mould = 127.3 mm. iii. Detachable collar: 100 mm diameter and 60 mm height. iv. Drainage base, having a porous disc.								
Theory, Formula, Permeability of soil can be determined from Darcy's Law. Principle, Concept The below equation can be used: k = ((2.3 × a × L)/(A×(t2-t1)))×log10(h1/h2)											
6	Procedure, Program, Activity, Algorithm, Pseudo Code		soil samp before sta Fill the st	le is fully s arting the test andpipe witl	aturated wit :. 1 water keep	h out any e oing the valv	entrapping over V1 and V	sure that the f air bubble /2 open and ne time and			

			L/-	ABORATORY PLAN -	CAY 2019-20		
		d) e) f) g)	Select is determined open the start the Record from \sqrt{h} condition Repeat Stop the	ne the height \/h ne valves and file stopwatch. the time interva 1h2 to h2. These n has been esta the step (e) at le e test and discor	ath2 and mark all the standpip als for water to the two time into blished. ast after chang anect all the pa	this height on be with water o fall from he ervals will be ging the heigh arts.	up to height h1 and ight h1 to √h1h2 and equal if a stead flow
,	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph						
8	Look-up Table, Output	Diame [*] Area o [*] Area o	ter of Soil f soil sam	ample L= sample D= ple A= pe a= Initial Head (h1) cm	-cm	Time t In seconds	k=((2.3 × a × L)/ (A×t))×log10(h1/h2)
9	Sample Calculations						
10	Graphs, Outputs						
		Coeffic	ient of Pe	ermeability of so	il k=	cm/	'sec
12	Application Areas		of earth				
13	Remarks						
14	Faculty Signature with Date						

Experiment 07: Shear strength tests

	Evenovimont No.	7	Maulca		Data		Data			
-	Experiment No.:	7	Marks		Date		Date			
					Planned		Conducted			
1	Title	Shear	r strength tes	sts						
2		from	tudents are able to calculate the shear strength of soil, and shear parameters om different laboratory tests. Direct shear test ,Unconfined compression estand triaxial test							
3	Aim	Deter	termination of shear parameters C and Ø of the soil by Direct Shear test							
	Material / Equipment Required	Shea	(a) She (b) Gric (c) Loa	tus coonsistii ar box 60 mr I plates, poro ding device er accessorie	n square and us stones, et		p,			
5	Theory, Formula,	Box s	hear tests ca	an be used fo	r the followir	ng tests.				
	Principle, Concept		1.	C	Quick and co	onsolidated	quick tests	on clay soil		
			samples							
			2.		slow test on a					
		Only	using box sh	ear test appa	ıratus may ca	arry the drain	ed or slow sl	near tests on		

PROVING RINGL or the shearing

ges during the

sand. As undisturbed samples of sand is not practicable to obtain, the box is filled with the sand obtained from the field and compacted to the required density and water content to stimulate field conditions as far as possible.

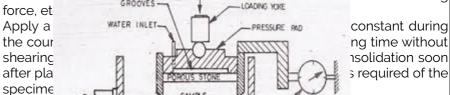
So far clay soil is concerned the undisturbed samples may be obtained from the field. The sample is cut to the required size and thickness of box shear test apparatus and introduced into the apparatus. The end surfaces are properly trimmed and leveled. Igf tests on remolded soils of clay samples are required; they are compacted in the mould to the required density and moisture content.

Coulombs equation is used for computing the shear parameters.

For clay soils

 $S=c+\sigma tan\Phi$

For sand


S= σtanΦ

c=unit cohesion Where.

 σ =normal load applied on the surface of the specimen.

 Φ -angle of shearing resistance.

- 6 Procedure. Program, Activity, Algorithm, Pseudo Code
- Place the sample of soil into the shear box, determine the water content and dry density of the soil compacted.
- Make all the necessary adjustments for applying vertical load, for measuri nent of shearing WATER GROOVES
- c) Apply a the cour shearinc after pla specime

- Shear th resistanc shearing
- WATER GROOVES Remove the specimen normalis one of the test, and determine the final water content.
- Repeat the tests on three or four identical specimens.
- 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

- 8 Observation Table, The test sample of cohesion less soil with a little cohesion is given in tabular Look-up Table form below.
 - Soil density pd = 1.62 g/cm³

Data sheet for sample 1: (for sample 2, 3, and 4 similar data sheets are to be prepared)

Initial area = Ao = 6×6 = 36 cm². Initial thickness = 2.4 cm. σ = 0.5 kg/cm²

Horizo	Horizo	Correc	Provin	Force	ζ	Vetical	Vertic	Ht(cm)
ntal	ntal	ted	g ring	(kg)	(kg/c	Dial	al	
dial	displa	area(c	readin		m ²⁾	readin	Dis(m	
gauge	ceme	m²)*	g			g	m)	
readin	nt							
g	(mm)							

Output

Corrected area in cm' is given by b (b-horizontal displacement)				L	ABORATOR	RY PLAN -	CAY 2010	-20		2-CV-2KI	T-Ph5b1-F0BE2-V2.2
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=			0								
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress Shear stress at failure σ(kg/cm²) (kg/cm²) 1 0.5 2 10 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=											
b- width of shear box-6cm From three samples the following results are obtained Test No Normal stress of(kg/cm²) Shear stress at failure of(kg/cm²) 1 0.5 2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained: Major principal stress σ1=kg/cm² Minor principal stress σ2=			* Correc	ted area	l a in cm² i	s aiven	⊥ ov b (b-l	 norizontal	l displa	acement)	
Test No Normal stress of(kg/cm²) 1 0.5 2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained: Major principal stress σ1=kg/cm² Minor principal stress σ2=kg/cm² Inclination to major principal stress θ1=degrees Inclination to minor principal stress θ2=							oy 20 (20)	1011201164	colopid	2001110110,	
Test No Normal stress of(kg/cm²) 1 0.5 2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained: Major principal stress σ1=kg/cm² Minor principal stress σ2=kg/cm² Inclination to major principal stress θ1=degrees Inclination to minor principal stress θ2=											
1 0.5 2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=			From th	iree sam	ples the	followir	ng result	s are obt	ained		
1 0.5 2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1*				Test N	lo					Shear st	ress at failure
2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1							σ(kg	/cm²)		ζ(Ι	kg/cm²)
2 1.0 3 1.5 From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1											
3 15				1			(0.5			
3 1.5											
From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=				2				1.0			
From the results a graph of Horizontal displacement VS Shear stress is drawn Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=				2			,				
Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=				3			-	1.5			
Mohr's circles are also plotted. From Mohr's circle the following details are obtained; Major principal stress σ1=kg/cm² Minor principal stress σ2=			Eropo th	o rocult	s a aranh	of Hom	izontol e	licaloon	oot \ /	Chaara	troccic drovun
From Mohr's circle the following details are obtained; Major principal stress σ_1 =			From th	e results	s a grapi		izontat C	usplacen	ient v	5 Shear S	tress is drawn
Major principal stress σ1=			Mohr's	circles a	re also p	lotted.					
Minor principal stress σ2=kg/cm² Inclination to major principal stress θ1=degrees Inclination to minor principal stress θ2=degrees 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature			From M	ohr's cir	cle the fo	ollowing	details	are obtai	ned;		
Inclination to major principal stress θ1=degrees Inclination to minor principal stress θ2=degrees 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature			Major p	rincipal s	stress σ1	=	kg/c	m²			
Inclination to minor principal stress θ2=degrees 9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature			Minor p	rincipal :	stress σ2	!=	kg/cı	m²			
9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature			Inclinati	ion to ma	ajor prind	cipal stre	ess θ1=	de(grees		
9 Sample Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature			Inclinati	ion to mi	nor prine	sinal ctr	2cc A2=		arooc		
Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature			nicuilali	ווון טו ווט	noi pini	Jipat Stří	555 DZ=-	ae	grees		
Calculations 10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature											
10 Graphs, Outputs 11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature	9										
11 Results & Analysis Angle of internal friction Ø= Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature											
Unit cohesion C=kg/cm² 12 Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil 13 Remarks 14 Faculty Signature		1 - 1	Anglo	of intorna	l friction	Ó					
Application Areas Ability to find Shear strength parameters to assess strength and deformation characteristics of soil Remarks 14 Faculty Signature	11	results & Analysis	Angle 0	ıı ırıtema	ıı metion	⊘ =					
characteristics of soil Remarks 14 Faculty Signature											
13 Remarks 14 Faculty Signature	12	Application Areas				ength p	paramet	ers to as	sess s	strength a	and deformation
14 Faculty Signature	10	Demarks	charact	eristics o	DT SOIL						
			<u>,</u>								

_	Experiment No.:	7	Marks	Date	Date	
	Experimentation	/	Fidino	Date	Date	

			LABORATO	DRY PLAN - CA				
				Pl	anned	C	onducted	
1		Shear stren		1 1 1 11			1 1	
2		from differe testand tria	ent laborat xial test	ory tests	Direct she	ar test ,Un	confined c	parameters compression
3						d Ø of the ompression t		unconfined
	Material / Equipment Required					t may be us		
5	Principle, Concept	tests may b field or a re content. The pressure.	e carried ou molded and e only press	ut either on a d compacted sure that is a	an undistur d to the req applied in th	uired densit nis case is th	nple brough y and mois e axial verti	nt from the ture cal
6	Procedure, Program, Activity, Algorithm, Pseudo Code	wat length b) Set nec c) Approx con of a d) Ske e) Tak	er content agth (Lo) and the sample essary adjubly the axial tinue the loxial strain.	and dry den diameter (c on the ped stments for load at a sti ad till the sa ure pattern a	sity are deto do) are also estal of the applying of rain of abou ample fails of and measur	vay as for a termined price measured. equipment a axial loads at 0.5 to 2 % pOR the deformation and the angle ailure zone for the sone sone sone sone sone sone sone son	or to the test and complets. Deer minute of rmation real	ete all the and ches 20 %
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph			Dial guage	Handle	-Proving ring Org Moving plat onical seatings		
8	Observation Table, Look-up Table, Output	b) Init	ial bulk der	cm, Ao = consity, $\rho t = g$ content, w =				
		Strain dial reading	ΔL(mm)	Axial Strain %	Corrected area, A(cm ²)	Proving ring reading (PR)	Axial Load P(kg)	Stress σ=P/A (kg/cm²)

		LABORATORY PLAIN - CAY 2019-20
		From the results so obtained a graph of Axial strain (%) Vs Axial stress is obtained
9	Sample Calculations	 a) The axial strain, ε% = (ΔL/Lo)×100 Where, ΔL = change in length of specimen. Lo = Initial length of specimen. b) Corrected area A, A = Ao/(1-ε) Where, Ao = initial sectional area op the specimen. c) Compressive stress, σ1, (which is the principal stress) is Δσ1= P/A where P = axial load. A plot of σ1 versus ε gives the maximum stress, which is the unconfined compressive strength of the soil specimen. Observations and tabulation of the test results of a particular specimen:
10	Graphs, Outputs	
	Results & Analysis	Average unconfined compressive stress qu=kg/cm² Angle of internal friction Undrained cohesive strengthkg/cm²
12	Application Areas	Ability to find Shear strength parameters to assess strength and deformation characteristics of soil
13	Remarks	
	Faculty Signature with Date	

-	Experiment No.:	7	Marks		Date Planned	Date Conducte	d
1	Title	Shea	r strength tes	sts			
2	Course Outcomes	from testa	different la nd triaxial tes	boratory tes st	ts Direct s	trength of soil, and she hear test ,Unconfined	compression
3	Aim	To de	etermine the by triaxial		eters of the s	oil sample C and Ø of th	ne soil sample
·	Material / Equipment Required	a) b)	ļ , , , , , , , , , , , , , , , , , , ,			I	
		and 7		The tests ma	y be carried	triaxial equipment is 38 out on any type of soil s.	
		The t	ests on c- Ø	soil or on pui	rely clay soil	may be on	
		a. Undisturbed samplesb. Remolded samples					
		The types of tests required are to be decided by taking into account the field conditions.					
	Procedure, Program, Activity, Algorithm, Pseudo		around it,		ing cap and	estal, place the rubbe complete all the forma	

Code

- b) For conducting an undrained test, close the drainage valve and for a drained test keep the valve open.
- c) For the sample to be consolidated under an all round pressure, keep the drainage outlet open.
- d) Apply the axial compressive force at a constant rate of strain.
- e) The failure of the sample may take place within a period of 5 to 15 minutes.
- f) After dismantling the set up, take out the specimen from the rubber membrane, weigh the sample and keep a small part of it for water content determination.

7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

8 Observation Table, Look-up Table, Output Initial length of the specimen Lo=-----cm Initial diameter of the specimen do=----cm Initial area of the specimen Ao =-----cm^2 Cell pressure σ 3------kg/cm²

Strain dial reading	ΔL(mm)	Axial Strain % = ΔL/L ₀	Correct ed area, A(cm ²)	Proving ring reading (PR)	r Load	Deviato r Stress σ =P/A (kg/cm ²)	Vertical stress $\sigma 1 = \sigma$ 3+devia tor stress

The same tabular column is repeated for different samples under different cell pressures.

A graph of Strain vs Deviator stress is plotted

		Mohr circles are drawn to plot Colomb's failure enevelope.
9	Sample	
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	Angle of internal friction Ø=
		Unit cohesion C=kg/cm²
12	Application Areas	Ability to find Shear strength parameters to assess strength and deformation
		characteristics of soil
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment 08 : Consolidation test

-	Experiment No.:	1	Marks		Date Planned	Date Conducted
1	Title	Consoli	dation test	-	Planned	Conducted
_		Studen	ts are ab			ents related to compressibilty and
	Aim	consoli	dation test			nd co-efficient of consolidation by
4	Material / Equipment Required	A fixed	ring conso	lidometer as	shown in the	e figure and other accessories
	Principle, Concept	undistu 1. 2. 3. The fol a) b) c) d) Where	rbed or dis Pressure Compre Coefficie Ilowing eq E = (h-hs) Hs = Ms/ Cc = δ e/ Cv = 0.19; For the log Cv = 0.848 For the sq h = thickne E = void ra Ms = dry n A = interna a) The b) The	sturbed sample-void ratio of ssion index, ent of consol quations are of this (G×A×pw) (log (P/Po) of time fitting of the samples of the sampl	ples of soil brouves. Cc. idation, cv. necessary for neces	g. sis of the test results are d the area A of the ring. solids.
6	Procedure, Program, Activity, Algorithm, Pseudo Code		c) Transf level t makin ring is the rir deterr d) Place arrang the po	er the soil sather surface was a compact pressed into the grant of the ring in the ring in the dial gorous stones.	ample (disturwith a straigh et sample from the sample mall sample the consolic pauge for tak should be sa	dation ring (M1) bed or undisturbed) into the ring and t edge. Use the standard practice for m disturbed soil. In all the cases the e. Find the mass of wet sample with of this soil is taken for water content lometer, set the loading device and ing readings. Before setting the ring, turated in advance. m² and take the initial reading. Allow

the load to remain for 24 hours.

- f) Apply the load increment of 10 kN/m² and take dial gauge readings (DR) at elapsed times of $\frac{1}{4}$, $\frac{1}{2}$,1,2,4,8,15,30,60,120,240,480,and 1140 minutes. Follow the same procedures for the next successive loadings of 20,50,100,200,400 and 800 kN/m².
- g) After the completion of the final loading, unload the specimen in steps.
 - First reduce to half of the final load and allow it to remain for 24 hours and take the DR.
- h) Dismantle the setup, remove the ring from its position and find its mass (M₃) after removing the excess water remaining on the surface by blotting it.
- Dry the soil with the ring in an oven cool it finds its mass (M4).
- 7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

8 Observation Table, Empty mass of the ring (M1)
Look-up Table, area of the ring (A)
Output Diameter of the ring (d)
volume of the ring (VR)
Thickness of the ring (hR)

Sp.gr solids (G)

opigi solias						
Load Intensity (kN/m²)	10	20	50	100	200	400
Elapsed time (min)			Dial Gauge	e readings		
0						
0.25						
0.50						
1						
2						
4						
8						
15						
60						
120						
240						
480						
1440						

		LABORATORY PLAN - CAY 2019-20
		Mass of dry soil gram = M4-M1
		Height of solids, hs = Ms/($G \times A \times Pw$)
		Compression of sample under seating load = Δhi
		Initial thickness of sample under seatring load, ho = (hR - Δhi)
		Initial void ratio, eo = (ho/hs) – 1
		Thickness of sample at any stage of loading, h = (ho - Δ h)
		Where Δh = compression of sample obtained from DR
		Height of voids at any stage of loading, ∆he = (h – hs)
		Void ratio at any stage of loading, e = (Δhe/h)
		Now e-log p curve can be plotted by use of the load applied P and the void ratio compression index Cc can be obtained from the curve. Curves giving the relationships between the dial readings (DR) and log t or √t can be drawn and the coefficient of consolidation, Cv can be obtained from these curves.
9	Sample	
9	Calculations	
10	Graphs, Outputs	
	Results & Analysis	
		Ability to find consolidation strength parameters to assess strength and
		deformation characteristics of soil
13	Remarks	
14	Faculty Signature	
	with Date	

Experiment og : Laboratory vane shear test

-	Experiment No.:	1	Marks		Date		Date	
					Planned		Conducted	
1	Title	Labor	atory vane s	shear test				
2		from	laboratory \	Vane shear te	est		oil, and shear	parameters
	Aim	To de			ar Strength c			
	Material / Equipment Required	1. 2.	The soil s	ample	atus with acc			
5	Principle, Concept	strengused 1. Whe 2. Whe It has	gth of soft-s under the fo ere the clay ere only the been found	ensitive clay ollowing cond is deep, norr undrained sl d that the va		may be regardated and selection is required.	nrded as a manded	ethod to be
	Procedure, Program, Activity, Algorithm, Pseudo Code		the require The rod is the require At the oth head is us speed of a a cylinder	ed depth is pushed or of ed depth. er end of the ed to apply a about 0.1 deg of soil consists of t	rod just abo a horizontal to gree per secc	ally until the ve the surfac orque and th and until the	vanes are ence of the grouis is applied soil fails, thus	mbedded at

		5. The first moment of these areas divided by the applied moment gives the unit shear value.
7	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	
8	Observation Table, Look-up Table,	
	Output	Eccentricity (lever arm) x=cm
		Turning moment Px=kg-cm
		Length of the vane L=cm
		Radius of the vane blades r=cm
9	Sample	Undrained Shear strength of Clay Cu= (Px)/(2*.Π*r²(L+2/3*r))
	Calculations	
10	Graphs, Outputs	
11	Results & Analysis	Undrained Shear strength of Clay Cu=kg/cm²
12		Ability to find Shear strength parameters to assess strength and deformation characteristics of soil
13	Remarks	
14	Faculty Signature with Date	

Experiment 10 :Demonstration of Swell pressure test, Standard penetration test and boring equipment

-	Experiment No.:	10	Marks		Date Planned		Date Conducted	
1	Title	Demoi equipr		f Swell pres		andard pene		and boring
2	Course Outcomes			to understa	nd the demo	nstration of t	he tests.	
3	Aim	Demoi	nstration of	Swell pressu	ıre test			
	Material / Equipment Required	a) b) c) d) e) f) g)	Consolido Dial gaug reservoir Soil trimm Water Oven Desiccato	e ning tools, or	vc			
_	The Date of the Control of the Contr						ing Pressure	
	Procedure, Program, Activity, Algorithm, Pseudo Code	1. Reje- 2. Clea sample 3. The 4. Trim voids i 5. The the sal the top of filter 6. Clea	in the consore by pressire soil specime, smooth and fany. It test may be mple is to co of the soil repaper.	gomm (more olidation ring my with hand hen cut shall and flush the seconducted be soaked, is and place the from outside.	and graduals and carefuloroject arour specimen will for both soan both cases are adjustable	ample from or lly insert the o lly removing and 10mm on o th both ends aked as well a s of compact e stem and pe	consolidation the soil aroun either side of of the ring a as unsoaked o tion, put a filt erforated plat	a ring in the aid it. the ring. nd fill all the conditions. If the paper on the top

moisture content and then repeat the above procedure.

B. Test procedure:

- 1. Assembly of the Consolidometer Test is to be done as per Fig. 1.
- 2. The free swell reading under the seating shall be recorded at different time intervals till the equilibrium is reached. It takes around 6-7 days to reach equilibrium. (ReferTable 1)
- 3. Consolidate the swollen sample under different pressures record the compression dial readings till the sample reaches steady state for each load. (Refer Table 2)

4. Increase the consolidation loads until the specimen attains its original volume.

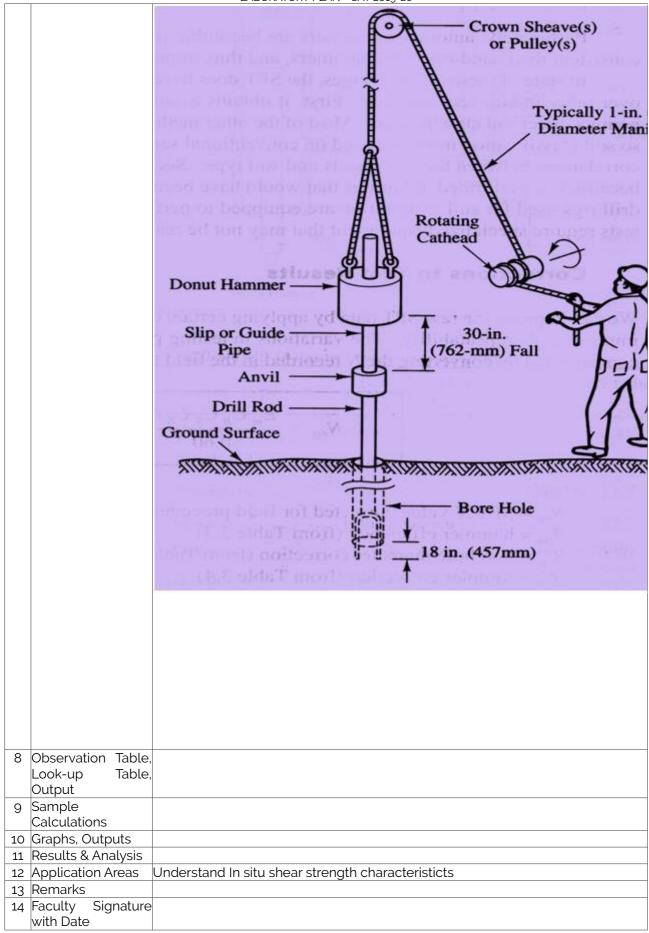
7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

Observation	Table,
Look-up	Table,
Output	
	Observation Look-up Output

1 0 2 1 3 2 4 4 5 8 6 12 7 16 8 20 9 24 10 28 11 32 12 13 14 15 16 16	sl.no	Elapsed time (hours)	Swell dial readings (mm)
3 2 4 4 5 8 6 12 7 16 8 20 9 24 10 28 11 32 12 13 14 15	1	0	
4 4 5 8 6 12 7 16 8 20 9 24 10 28 11 32 12 13 14 15	2	1	
5 8 6 12 7 16 8 20 9 24 10 28 11 32 12 13 14 15	3	2	
6 12 7 16 8 20 9 24 10 28 11 32 12 13 14 15	4	4	
7 16 8 20 9 24 10 28 11 32 12 13 14 15	5	8	
8 20 9 24 10 28 11 32 12 33 13 4 15 4	6	12	
9 24 10 28 11 32 12 13 14 15	7	16	
10 28 11 32 12 13 14 15	8	20	
11 32 12 13 14 15	9	24	
12 13 14 15	10	28	
13 14 15	11	32	
14 15	12		
15	13		
	14		
16	15		
	16		

		sl.no	Applied	pressure	Change		thickness	of
--	--	-------	---------	----------	--------	--	-----------	----

		LABORATORY F	PLAN - CAY 2019-20				
			(kg/cm2)	specimen (mm)			
		1	0.05				
		2	01				
		3	0.25				
		4	0.5				
		5	1				
		6	2				
		7	4				
		8	8				
		9	16				
9	Sample Calculations						
10		1. Plot swelling dial reading (refer Table 1) with elapsed time as abscissa and swelling dial reading as ordinates on natural scale. If the curve so drawn becomes asymptotic with the abscissa, the swelling has reached its maximum and hence the swelling phase shall be stopped, and the consolidation phase shall be started. 2. The compression readings (refer Table 2) shall be plotted with change in thickness of expanded specimen as ordinates and consolidation pressure applied as abscissa in semi- logarithmic scale. The swelling pressure exerted by the soil specimen under zero swelling condition shall be obtained by interpolation.					
	Results & Analysis						
		Understand In situ shear st	rength characteristicts				
	Remarks						
14	Faculty Signature with Date						


-	Experiment No.:	10	Marks		Date		Date	
					Planned	<u> </u>	Conducted	
1	Title	Demonstration of Swell pressure test, Standard penetration test and boring						
	Cauraa Outaanaa		equipment					
	Course Outcomes		Students are able to understand the demonstration of the tests.					
	Aim Material	, Demo	Demonstration of Standard penetration test					
	4 Material / Equipment Required a) Tripod (to give a clear height of about 4 m; one of the legs of the						of the tripo	
should have ladder to facilitate a person to reach tripod head					d.)			
		b) Tripod head with hook						
		c)	Pulley					
		d)	Guide pipe	e assembly				
		e)	Standard :	split spoon s	ampler			
		f)	A drill rod	for extendin	g the test to	deeper deptl	าร	
		g)	Heavy dut	y post hole a	auger (100 m	m to 150 mm	n diameter)	
		h)	Heavy dut	y helical aug	jer			
		i)	Heavy dut	y auger exte	nsion rods			
		j)	Sand baile	er				
		k)	Rope (abo	out 15 m long	& strong end	ough to lift 6;	3.5 kg load re	peatedly)

		1)	LABORATORY PLAN - CAY 2019-20
		L)	A light duty rope to operate sand bailer
		m)	Chain pulley block
		n)	Casing pipes
		0)	Casing clamps
		p)	Casing couplings
		q)	Measuring tapes
		r)	A straight edge (50 cm)
		s)	Tool box
5	Theory, Formula, Principle, Concept		
6	Procedure,	a)	Identify the location of testing in the field
	Program, Activity,	b)	Erect the tripod such that the top of the tripod head is centrally located
	Algorithm, Pseudo Code		over the testing spot. This can be reasonably ensured by passing a rope
			over the pulley connected to the tripod head and making the free end of
			the rope to come down and adjusting the tripod legs such that the rope
			end is at the testing spot. While erecting and adjusting the tripod legs,
			care should be taken to see that the load is uniformly distributed over
			the three legs. This can be achieved by ensuring the lines joining the tips
			of the tripod legs on the ground forms an equilateral triangle. Further, it
			·
			should be ensured that the three legs of the tripod are firmly supported
			on the ground (i.e. the soil below the legs should not be loose and they
			should not be supported on a sloping rock surface or on a small boulder
			which may tilt during testing.)
		c)	Advance the bore hole, at the test location, using the auger. To start with
			advance the bore hole for a depth of 0.5 m and clear the loose soil from
			the bore hole.
		d)	Clean the split spoon sampler and apply a thin film of oil to the inside
			face of the sampler. Connect an A-drill extension rod to the split spoon
			sampler.
		e)	Slip the 63.6 kg weight on to the guide pipe assembly and connect the
			guide pipe assembly to the other end of the A-drill rod.
		f)	The chain connected to the driving weight is tied to the rope passing
			over the pulley at the tripod head. The other end of the rope is pulled
			down manually or with help of mechanical winch. By pulling the rope
			down, the drive weight, guide pipe assembly, A-drill rod and the split
			spoon sampler will get vertically erected.
		g)	A person should hold the guide pipe assembly split spoon sampler to be
			vertical with the falling weight lowered to the bottom of the guide
			assembly.
		h)	Now place a straight edge across the bore touching the A-drill rod. Mark
			the straight edge level all round the A-drill rod with the help of a chalk or
			any other marker. From this mark, measure up along the A-drill rod and
			any other marker. From this mark, measure up along the A-unit rod and

mark 15 cm, 30 cm and 45 cm above the straight edge level. Lift the driving weight to reach the top of the guide pipe assembly travel and allow it to fall freely. The fall of driving weight will transfer the impact load to the split spoon sampler, which drive the split spoon sampler into the ground. Again lift the drive weight to the top of travel and allow it to fall freely under its own weight from a height of 75 cm. as the number of blows are applied, the split spoon sampler will penetrate into the ground and the first mark (15 cm mark) on the drill rod approaches the straight edge.

- i) Count the number of blows required for the first 15 cm, second 15 cm and the third 15 cm mark to cross down the straight edge.
- j) The penetration of the first 15 cm is considered as the seating drive and the number of blows required for this penetration is noted but not accounted in computing penetration resistance value. The total number of blows required for the penetration of the split spoon sampler by 2nd and 3rd 15 cm is recorded as the penetration resistance or N-value.
- k) After the completion of the split spoon sampler by 45 cm, pull out the whole assembly. Detach the split sampler from A-drill rod and open it out. Collect the soil sample from the split spoon sampler into a sampling bag. Store the sampling bag safely with an identification tag for laboratory investigation.
- l) Advance the bore hole by another 1 m or till a change of soil strata which ever is early.
- m) The test is repeated with advancement of bore hole till the required depth of exploration is reached or till a refusal condition is encountered. Refusal condition is said to exist if the number of blows required for the last 30 cm of penetration is more than 100.
- **n)** The test will be repeated in number of bore holes covering the site depending on the building area, importance of the structure and the variation of the soil properties across the site.
- o) The SPT values are presented either in the form of a table or in the form of bore log data.

7 Block, Circuit, Model Diagram, Reaction Equation, Expected Graph

